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Caloric curves measurements in heavy-ion collisions [1] have shown signs of a liquid-vapour phase 

transition in nuclear matter. The plateau region of the caloric curve, that is, the dependence of temperature, 
𝑇𝑇, on excitation energy per particle 𝜀𝜀ex, gives the signal of phase transition [2]. For finite nuclear systems 
composed of a limited number of neutrons 𝑁𝑁 and protons 𝑍𝑍 (small system), the extension of concepts as 
applied in the case of infinite matter is possible [3]. Generally, the liquid-vapour phase transition is 
accompanied by an increase of energy and particle number fluctuations. In this context it is of interest to 
consider fluctuations for thermodynamic states along the caloric curve. Here we address this issue within 
the grand canonical ensemble formulation. 

The grand partition sum 𝛯𝛯  and grand potential 𝛺𝛺 for the system driven by the corresponding 
environmental variables are written as,  

 
𝛯𝛯(𝜆𝜆0, 𝜆𝜆1,𝑉𝑉,𝑇𝑇) = ∬𝑑𝑑𝐴𝐴0𝑑𝑑𝐴𝐴1 exp��𝜆𝜆0𝐴𝐴0 + 𝜆𝜆1𝐴𝐴1 − 𝐹𝐹(𝐴𝐴0,𝐴𝐴1,𝑉𝑉,𝑇𝑇)�/𝑇𝑇� ,     𝛺𝛺 = −𝑇𝑇 ln(𝛯𝛯).        (1) 
 

Here, the integration is carried out over possible values of total number of nucleons 𝐴𝐴0 = 𝑁𝑁 + 𝑍𝑍 and 
neutron excess 𝐴𝐴1 = 𝑁𝑁 − 𝑍𝑍. In Eq. (1), 𝐹𝐹 = 𝐹𝐹(𝐴𝐴0,𝐴𝐴1,𝑉𝑉,𝑇𝑇) stands for the free energy, 𝜆𝜆0 and 𝜆𝜆1 are, 
respectively, the isoscalar and isovector chemical potentials, 𝑉𝑉 is the system volume, and 𝑇𝑇 is the 
temperature. In order to calculate the average quantities and fluctuations, the probability distribution 
function 𝑝𝑝(𝐴𝐴0,𝐴𝐴1) = exp[(𝜆𝜆0𝐴𝐴0 + 𝜆𝜆1𝐴𝐴1 − 𝐹𝐹)/𝑇𝑇] /𝛯𝛯 is introduced. Using this distribution function the 
average values of particle number, 〈𝐴𝐴0〉, neutron excess, 〈𝐴𝐴1〉, pressure, 〈𝑃𝑃〉, and energy, 〈𝐸𝐸〉, are reduced 
to the first derivatives of the grand potential (1) for 𝜆𝜆0, 𝜆𝜆1,𝑉𝑉 and 𝑇𝑇, respectively, 
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The excitation energy per particle 𝜀𝜀ex, needed for determination of the caloric curve, 𝑇𝑇(𝜀𝜀ex), is obtained 
from Eq. (2) as 

   𝜀𝜀ex = (〈𝐸𝐸〉 − 𝐸𝐸𝑔𝑔𝑔𝑔)/〈𝐴𝐴0〉  ,              (3) 
 
where 𝐸𝐸𝑔𝑔𝑔𝑔 is the ground state energy at 𝑇𝑇 = 0. One should note that, for the considered small system, the 
energy 〈𝐸𝐸〉 is not linear homogeneous function of entropy 〈𝑆𝑆〉, volume 𝑉𝑉, and 〈𝐴𝐴0〉, 〈𝐴𝐴1〉 numbers, in 
contrast to the macroscopic limit 𝑉𝑉 → ∞ (within the habitual thermodynamics for infinite nuclear matter) 
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when all extensive properties become functions of 𝜆𝜆0, 𝜆𝜆1, and 𝑇𝑇 only. Nevertheless, for the certain set of 
environment variables, like 𝜆𝜆0, 𝜆𝜆1,𝑉𝑉 and 𝑇𝑇 in our case, the thermodynamics of small system can be built 
[4]. Along with “differential” pressure 〈𝑃𝑃〉, see Eq. (2), the “integral” pressure 𝑃𝑃� = −𝛺𝛺/𝑉𝑉 is introduced, 
and the average energy takes the form 〈𝐸𝐸〉 = 𝑇𝑇〈𝑆𝑆〉 − 〈𝑃𝑃〉𝑉𝑉 + 𝜆𝜆0〈𝐴𝐴0〉 + 𝜆𝜆1〈𝐴𝐴1〉 + ℰ, with ℰ = �〈𝑃𝑃〉 − 𝑃𝑃��𝑉𝑉 
being the correction term for the small system which disappears in the macroscopic limit, i.e. 
−(𝜕𝜕𝛺𝛺/𝜕𝜕𝑉𝑉)𝜆𝜆0,𝜆𝜆1,𝑇𝑇 = −𝛺𝛺/𝑉𝑉 = 𝑃𝑃� = 〈𝑃𝑃〉 (see Ref. [4]). 

We have calculated the isobaric caloric curve, using 𝑃𝑃� = 0.05 MeV/fm3, for the small nuclear 
system having on the average 〈𝐴𝐴0〉 = 200 and 〈𝐴𝐴1〉 = 40 and the asymmetry parameter 𝑋𝑋 = 〈𝐴𝐴1〉/〈𝐴𝐴0〉 =
0.2. Calculation was carried out for the temperature interval 𝑇𝑇 = 5 ÷ 12 MeV using KDE0v1 Skyrme 
effective nucleon-nucleon interaction [5]. At each chosen temperature the values of 𝜆𝜆0, 𝜆𝜆1, and 𝑉𝑉 were 
determined to provide the above mentioned values of 〈𝐴𝐴0〉, 〈𝐴𝐴1〉, and 𝑃𝑃�. The result is shown in Fig. 1 by 
the dotted line. With the aim of comparison, the calculation at the same pressure and asymmetry parameter 
was carried out for infinite asymmetric nuclear matter (solid and dashed lines in Fig. 1). Comparing the 
dotted line with the solid one in Fig. 1 it is seen that the temperature in the middle of plateau region for the 
small system is lower than that for infinite matter by about of 0.2 MeV. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We also obtained the relative fluctuations of the nucleon number, 𝛿𝛿0, and the neutron excess, 𝛿𝛿1, 

by means of the following expressions 

 
FIG. 1. Isobaric caloric curves 𝑻𝑻(𝜺𝜺𝐞𝐞𝐞𝐞). Dotted line presents the result 
at pressure 𝑷𝑷� = 𝟎𝟎.𝟎𝟎𝟎𝟎 𝐌𝐌𝐞𝐞𝐌𝐌/𝐟𝐟𝐦𝐦𝟑𝟑 for small nuclear system with 
〈𝑨𝑨𝟎𝟎〉 = 𝟐𝟐𝟎𝟎𝟎𝟎, 〈𝑨𝑨𝟏𝟏〉 = 𝟒𝟒𝟎𝟎. Solid and dashed lines shows the result in 
the case of infinite matter for the same pressure and asymmetry 
parameter. Dashed line correspond to a single phase, solid line is 
obtained for phase coexistence region. Calculations were carried out 
using KDE0v1 Skyrme nucleon-nucleon effective interaction [5]. 
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  .         (4) 

 
The calculation of the dispersion and, consequently, the fluctuation (absolute or relative) of 𝐴𝐴0 and 𝐴𝐴1 
requires the value of the second derivative of the grand potential 𝛺𝛺 with respect to the corresponding 
chemical potential. Fig. 2 presents the relative fluctuations 𝛿𝛿0 and 𝛿𝛿1 for small nuclear system 〈𝐴𝐴0〉 = 200, 
〈𝐴𝐴1〉 = 40 as functions of excitation energy per particle. Fig. 2 demonstrates the increase of fluctuations in 
the two-phase region of excitation energies. Such an increase, together with the plateau region in caloric 
curve 𝑇𝑇(𝜀𝜀ex), gives the signature of the occurring phase transition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In spite of the presented results for small nuclear system do not include the effects of Coulomb 
interaction and nuclear surface, they still can be valuable to give an idea on the excitation energy range 
where to expect the observation of liquid-vapour phase transition. 
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FIG. 2. Relative fluctuations of the nucleon number 𝜹𝜹𝟎𝟎 (red dots) and 
neutron excess 𝜹𝜹𝟏𝟏 (blue dots) versus the excitation energy per 
nucleon 𝜺𝜺𝐞𝐞𝐞𝐞, see Eqs. (3), and (4). Results are obtained for small 
nuclear system with 〈𝑨𝑨𝟎𝟎〉 = 𝟐𝟐𝟎𝟎𝟎𝟎 and 〈𝑨𝑨𝟏𝟏〉 = 𝟒𝟒𝟎𝟎 along the caloric 
curve, see Fig. 1. The range of 𝜺𝜺𝐞𝐞𝐞𝐞 between vertical dashed lines 
corresponds to coexistence of liquid and vapour phases for the case 
of infinite nuclear matter. 


